首页> 外文OA文献 >Structurally stable Mg-doped P2-Na2/3Mn1-yMgyO2 sodium-ion battery cathodes with high rate performance: Insights from electrochemical, NMR and diffraction studies
【2h】

Structurally stable Mg-doped P2-Na2/3Mn1-yMgyO2 sodium-ion battery cathodes with high rate performance: Insights from electrochemical, NMR and diffraction studies

机译:具有高倍率性能的结构稳定的掺Mg的P2-Na2 / 3Mn1-yMgyO2钠离子电池阴极:来自电化学,NMR和衍射研究的见解

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Sodium-ion batteries are a more sustainable alternative to the existing lithium-ion technology and could alleviate some of the stress on the global lithium market as a result of the growing electric car and portable electronics industries. Fundamental research focused on understanding the structural and electronic processes occurring on electrochemical cycling is key to devising rechargeable batteries with improved performance. We present an in-depth investigation of the effect of Mg doping on the electrochemical performance and structural stability of Na2/3MnO2 with a P2 layer stacking by comparing three compositions: Na2/3Mn1-yMgyO2 (y = 0.0, 0.05, 0.1). We show that Mg substitution leads to smoother electrochemistry, with fewer distinct electrochemical processes, improved rate performance and better capacity retention. These observations are attributed to the more gradual structural changes upon charge and discharge, as observed with synchrotron, powder X-ray, and neutron diffraction. Mg doping reduces the number of Mn3+ Jahn-Teller centers and delays the high voltage phase transition occurring in P2-Na2/3MnO2. The local structure is investigated using 23Na solid-state nuclear magnetic resonance (ssNMR) spectroscopy. The ssNMR data provide direct evidence for fewer oxygen layer shearing events, leading to a stabilized P2 phase, and an enhanced Na-ion mobility up to 3.8 V vs. Na+/Na upon Mg doping. The 5% Mgdoped phase exhibits one of the best rate performances reported to date for sodium-ion cathodes with a P2 structure, with a reversible capacity of 106 mAhg-1 at the very high discharge rate of 5000 mAg-1. In addition, its structure is highly reversible and stable cycling is obtained between 1.5 and 4.0 V vs. Na+/Na, with a capacity of approximately 140 mAhg-1 retained after 50 cycles at a rate of 1000 mAg-1
机译:钠离子电池是现有锂离子技术的一种更可持续的替代方法,并且可以缓解由于电动汽车和便携式电子行业的增长而对全球锂市场造成的一些压力。致力于理解电化学循环中发生的结构和电子过程的基础研究对于设计性能得到改善的可充电电池至关重要。通过比较三种成分Na2 / 3Mn1-yMgyO2(y = 0.0,0.05,0.1),我们对Mg掺杂对Na2 / 3MnO2与P2层堆叠的电化学性能和结构稳定性的影响进行了深入研究。我们表明,镁取代可导致电化学更平稳,具有更少的独特电化学过程,提高的速率性能和更好的容量保持率。这些观察结果归因于通过同步加速器,粉末X射线和中子衍射观察到的在充电和放电时结构的逐渐变化。镁的掺杂减少了Mn3 + Jahn-Teller中心的数量,并延迟了P2-Na2 / 3MnO2中发生的高压相变。使用23Na固态核磁共振(ssNMR)光谱研究了局部结构。 ssNMR数据直接证明存在较少的氧层剪切事件,从而导致了稳定的P2相,并且在掺杂Mg后相对于Na + / Na而言,Na离子迁移率高达3.8V。 5%的Mg掺杂相具有迄今为止报道的具有P2结构的钠离子阴极的最佳速率性能之一,在5000 mAg-1的极高放电速率下可逆容量为106 mAhg-1。此外,其结构具有高度可逆性,并且在相对于Na + / Na的1.5至4.0 V之间可获得稳定的循环,以1000 mAg-1的速率经过50次循环后保留了约140 mAhg-1的容量

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号